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Acronyms 
CWS- Caution and Warning System 

EMU- Extravehicular Mobility Unit 

FIFO- First In First Out 

FMC- FPGA Mezzanine Card 

FPGA- Field Programmable Gate Array 

HPC- High Pin Count 

IP- Intellectual Property 

LPC- Low Pin Count 

LVDS- Low Voltage Differential Signaling 

NASA- National Aeronautics and Space Administration 

PLSS- Portable Life Support System 

RISC- Reduced Instruction Set Computer 

TMR- Triple Modular Redundancy 

xEMU- Exploratory EMU 



   
 

   
 

Mission Statement 
Create and test a microcontroller using TMR with various configurations of the RISC-V open 

source instruction set on Microsemi’s PolarFire radiation tolerant FPGA. This is to test the 

possibility of using RISC-V architecture in space, specifically the possibility of implementing this 

system in the CWS in NASA’s newest space suit, the xEMU. 

  



   
 

   
 

Design Specifications 

Required Specifications 

• Use VHDL, not Verilog/System Verilog 

• Multiple configurations of a RISC-V core (at least 3)  

• Create a program to benchmark and test RISC-V cores 

• Microcontroller architecture with the following features: 

▪ 10 LVDS Full-Duplex UARTs 

▪ TMR 

▪ GPIO pins 

▪ SPI 

▪ I2C 

• PCB that connects to the PolarFire’s FMC HPC with the following features: 

▪ LCD screen 

▪ 3-position toggle switch 

▪ Ports for Full-Duplex LVDS UART using the provided FIFOs 

▪ LEDs and Switches for testing 

▪ ADC 

Optional Specifications 
• Program to test all microcontroller and PCB features 

• Interface with program over FPGA’s micro USB port 

• Microcontroller architecture: 

▪ PWM signals 

▪ Normal UART 

▪ UART over FPGA’s micro USB port 

▪ GPIO interrupts 

• PCB: 

▪ Pressure and humidity sensor 

▪ Heartrate sensor 

▪ Accelerometer 

▪ 12v, 5v, and 3.3v ports 

▪ SPI, I2C, UART ports 

  



   
 

   
 

Project Report 
Unfortunately, there were some unforeseen setbacks, hindering the amount of time we could 

devote to designing and testing. The computers needed more memory to synthesize our 

design, Sophos anti-virus software and Windows Defender constantly removed files Libero 

needed to synthesize the design and run place and route. The school was also closed due to a 

pandemic. 

We were, however, able to create a solid foundation for next semester’s students to be 

successful in continuing to design and test the hardware, software, and PCB. 

Microcontroller Design 
Libero’s smart design was used for majority of the project, due to the available IPs we could 

use. Using a tutorial on how to implement a RISC-V core on the PolarFire FPGA, we created a 

basic core, implemented TMR, and started to implement the features needed to create one 

completed and fully featured microcontroller. To answer any questions about how the core was 

configured, or how to connect to the microcontroller over the micro USB port, see the tutorial 

we followed here. The tutorial also goes over how to program the microcontroller and set it up 

for debugging in Soft Console. 

With what time we were able to spend designing the microcontroller, a great deal of progress 

was made, but not fully tested. We were able to get one complete core working in TMR. 

Implement SPI, I2C, and UART over the FPGA’s micro USB port, GPIO, and somewhat LVDS 

UART. Some of these features were tested using 6 GPIO pins located on the PolarFire 

development board, but very few features could be completely tested. 

LVDS Full-Duplex and Normal UARTs 
The UART over the FPGA’s micro USB port is fully functional. Using PuTTY, you can connect to 

the microcontroller. 

As for the LVDS Full-Duplex UART, we created a design that could possibly work. We tried to 

implement the FIFO into the bus interface, but don’t know if we were able to insert it correctly. 

To create the UART, we used a normal UART IP with a LVDS IP specific to the PolarFire FPGA 

(see figure below). 

../datasheets/polarfire_datasheets/Microsemi_PolarFire_FPGA_Building_Mi-V_Subsystem_Tutorial_TU0775_V5.pdf


   
 

   
 

Figure 1: Implementation of a single LVDS UART Module 

Unfortunately, the LVDS IP doesn’t have the ability to pick what port it outputs to on the FPGA. 

This kept us from being able to test this feature.  

SPI 
The SPI module is an IP that was implemented when following the tutorial. It has been changed 

to include five extra SPI select pins to be used for a couple SPI devices on the PCB, and for some 

external SPI connections.  

 

Figure 2: Smart Design implementation of the SPI module 

“SSISS[0]” in the figure above connects to the FPGA’s SPI FLASH, which is what is flashed with 

the program for the processor to run. Limited testing was done for the SPI, but “SPISCLKO” 

would activate when sending data over SPI. 

I2C 

The I2C communication capabilities have been added into CPU design using a CoreI2C module. 

This is connected to the processor via the Advanced Peripheral Bus (APB). This module 

currently uses a single I2C channel set to Full Master RX/TX mode.  



   
 

   
 

 

Figure 3: CORE I2C IP Module added to the project 

Because this module has a separate line for input and output of the serial clock and the serial 

data, bi-directional buffers are used to combine them. This allows for bi-directional 

communication using only 2 pins.  

 

Figure 4: Bi-directional buffers combining inputs and output lines of I2C SDA and SCL 

This I2C implementation was able to be tested to a small degree. It was verified to produce 

output on the SDA and SCL pins that it was assigned to. This is the extent that was able to be 

tested before the quarantine went into effect, so more work will probably be needed to 

properly configure the I2C module to communicate with the sensors.  

 



   
 

   
 

Figure 5: I2C SDA output viewed on an oscilloscope 

 

 

GPIO 
The GPIO pins initially came from the tutorial also, but have been modified to include 32 GPIO 

ports, both input and output (so they can be configured in software), be able to send interrupts 

signals to the ISR. 

 

Figure 6: CORE GPIO IP Module (left) and GPIO Top Module (right) 

The GPIO pins were set to both input and output and the interrupt settings were set in the 

settings of the Core GPIO IP module. To give them the ability to be both an input and an output, 

a bi-directional buffer had to be added to each GPIO port (this buffer is also used for the I2C IP). 

To make things look cleaner in the top Smart Design, all of this was implemented in a sub-

module call GPIO_TOP. 



   
 

   
 

 

Figure 7: Bi-directional Buffer IP 

Not all aspects of the GPIO ports were tested. The tutorial had them set as output only pins 

with no interrupts attached. This worked in Software, but no testing has been done to see if the 

changes listed still work as expected. 

RISC-V Implementations 
We have the solution for the tutorial we followed implemented as one of our cores. Once we 

had a solid grasp on the CPU design process, we started from this solution and made the 

Solution – Copy project. That copy was fully modified to interface with the PCB and should 

serve as a point of reference if any problems arise. The finished copy was then saved as a 

separate project for more concise documentation. It was named Solution – MIV_AXI. The three 

other processor designs are based on this Solution – MIV_AXI. Solution – CoreRISCV replaces 

the processor in Solution – MIV_AXI with the CoreRISCV processor. MIV_FP and MIV_AHB are 

alternate processors substituted into Solution – MIV_AXI with one key difference, these two 

use AHB memory controllers and needed some adaptation to work with the onboard memory 

(they are close to completion but do require more effort yet to finish them off). All four of these 

last designs (the three MIV and the one CoreRISCV processors) need to be tested and then they 

can be benchmarked to see which one works the best. 

A more thorough explanation can be found here.  

PCB Design 

The design of the PCB began with a selection of different sensors that we wanted to test.  The 

sensors that were chosen are a heartrate, pressure and humidity, and accelerometer sensors. 

Along with the sensors there were some additional necessities to add to the design. The 

addition of 3.3, 5, and 12 Voltage ports and ports for SPI, I2C, and UART for communication. In 

order to use information gained from the sensors an ADC was also needed. Also needed are 

GPIO pins, an LCD screen, switches with an associated LED, an FMC connector, and a toggle 

switch. 

With the components picked, the next step was to find the models and footprints to import 

into Altium. When all the components had their designated footprint, we could begin putting 

together all the needed schematics. By reviewing the specifications for a given part, 

interconnecting the different parts was quite easy. When each part was fully connected the last 

thing to be done was the routing. 

../RISC-V/RISC-V_Configurations.pdf


   
 

   
 

The process of routing the PCB was not an easy one. While adding more layers to the board can 

make routing significantly easier, it also makes it more expensive. We were determined to 

route everything on 2 layers, leaving 2 for a power and ground plane. One issue that was 

prominent came from the FMC connector. With 400 pins and several and limited space, careful 

design was needed to get all the traces to connect. With routing complete the only steps left 

were to create a solder mask and create a pour. When these steps were complete, we shipped 

the board to get milled. 

Drivers and UI Design 

Once a RISC-V core is built and loaded onto the FPGA, we can use SoftConsole, a software 

package to program softcores, to run our custom drivers and software on our cores. This is how 

we set up the interface with the PCB and how we planned on benchmarking the processors. 

We started by building a general user interface that worked over the JTAG debugging UART to 

send messages back and forth with a Putty window. On FPGA startup, we could see the intro 

message displayed by our processor and then it would display a menu of possible options. We 

created drivers to interface with each of our custom sensors as well as any communications 

protocols. We created drivers that would allow our processors to communicate over SPI and I2C 

with sensors already on the board, as well as any additional sensors or devices added later on 

using the external pins on our PCB. We created code so that the LCD screen could be initialized 

and then display custom messages or a simple test image. 

Some of these driver modules need to be completed still, and all of them need to be tested 

with the PCB. No code has been included to leverage the ADC on the PCB, but individual sensor 

drivers could be added that take the output from the ADC and convert it into intelligible 

information. Doxygen code has been added so that our code becomes clearer. Some of the 

documentation outlines which parts are yet to be done and need some tender love and care. 

These efforts were mostly setting up the stage for a later user interface we had planning on 

designing. NASA wanted us to make a simple interface using the LCD screen and the paddle 

switch. The FPGA and the PCB together would form a standalone unit. The LCD would display a 

sensor name and the value currently measured by it. Flipping the paddle switch up or down 

would send interrupt signals to the processor, prompting it to switch which sensor was 

currently displayed.  The sensors could, for example, be placed into a list that would be iterated 

through using the paddle switch. The values for each could be held by registers that were 

updated by the processors. Every small-time interval, those registers could all be updated to 

their current values, and then whichever sensor in the list was currently selected, its real time 

value could be refreshed by the LCD so that all displayed information was up to date. 



   
 

   
 

Conclusion 
The goal of this project was to implement RISC-V cores on the PolarFire FPGA, set them up in a 

TMR configuration, and test them. The testing would be done both by a benchmarking program 

and by a PCB with sensors using the different communication protocols implemented. 

Although there were a few setbacks, we were able to get a major portion of the project done. 

One complete core set up with TMR was created with two other cores close to completion. A 

PCB was designed and manufactured and can quickly be ready for testing with the FPGA. The 

software is ready to be benchmarked. 

With the groundwork we have laid, future teams will now be able to fully test the system with 

minimal effort and then improve the designs we have made. The additional RISC-V core 

configurations can also be completed and tested to provide data sets for each configuration.  


